3.295 \(\int \frac{a+b \log (c x^n)}{x^4 (d+e x^2)^{3/2}} \, dx\)

Optimal. Leaf size=176 \[ \frac{8 e^2 x \left (a+b \log \left (c x^n\right )\right )}{3 d^3 \sqrt{d+e x^2}}+\frac{4 e \left (a+b \log \left (c x^n\right )\right )}{3 d^2 x \sqrt{d+e x^2}}-\frac{a+b \log \left (c x^n\right )}{3 d x^3 \sqrt{d+e x^2}}-\frac{8 b e^{3/2} n \tanh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d+e x^2}}\right )}{3 d^3}+\frac{14 b e n \sqrt{d+e x^2}}{9 d^3 x}-\frac{b n \sqrt{d+e x^2}}{9 d^2 x^3} \]

[Out]

-(b*n*Sqrt[d + e*x^2])/(9*d^2*x^3) + (14*b*e*n*Sqrt[d + e*x^2])/(9*d^3*x) - (8*b*e^(3/2)*n*ArcTanh[(Sqrt[e]*x)
/Sqrt[d + e*x^2]])/(3*d^3) - (a + b*Log[c*x^n])/(3*d*x^3*Sqrt[d + e*x^2]) + (4*e*(a + b*Log[c*x^n]))/(3*d^2*x*
Sqrt[d + e*x^2]) + (8*e^2*x*(a + b*Log[c*x^n]))/(3*d^3*Sqrt[d + e*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.166127, antiderivative size = 176, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 8, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.32, Rules used = {271, 191, 2350, 12, 1265, 451, 217, 206} \[ \frac{8 e^2 x \left (a+b \log \left (c x^n\right )\right )}{3 d^3 \sqrt{d+e x^2}}+\frac{4 e \left (a+b \log \left (c x^n\right )\right )}{3 d^2 x \sqrt{d+e x^2}}-\frac{a+b \log \left (c x^n\right )}{3 d x^3 \sqrt{d+e x^2}}-\frac{8 b e^{3/2} n \tanh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d+e x^2}}\right )}{3 d^3}+\frac{14 b e n \sqrt{d+e x^2}}{9 d^3 x}-\frac{b n \sqrt{d+e x^2}}{9 d^2 x^3} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Log[c*x^n])/(x^4*(d + e*x^2)^(3/2)),x]

[Out]

-(b*n*Sqrt[d + e*x^2])/(9*d^2*x^3) + (14*b*e*n*Sqrt[d + e*x^2])/(9*d^3*x) - (8*b*e^(3/2)*n*ArcTanh[(Sqrt[e]*x)
/Sqrt[d + e*x^2]])/(3*d^3) - (a + b*Log[c*x^n])/(3*d*x^3*Sqrt[d + e*x^2]) + (4*e*(a + b*Log[c*x^n]))/(3*d^2*x*
Sqrt[d + e*x^2]) + (8*e^2*x*(a + b*Log[c*x^n]))/(3*d^3*Sqrt[d + e*x^2])

Rule 271

Int[(x_)^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x^(m + 1)*(a + b*x^n)^(p + 1))/(a*(m + 1)), x]
 - Dist[(b*(m + n*(p + 1) + 1))/(a*(m + 1)), Int[x^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, m, n, p}, x]
&& ILtQ[Simplify[(m + 1)/n + p + 1], 0] && NeQ[m, -1]

Rule 191

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^(p + 1))/a, x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]

Rule 2350

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> Wit
h[{u = IntHide[(f*x)^m*(d + e*x^r)^q, x]}, Dist[a + b*Log[c*x^n], u, x] - Dist[b*n, Int[SimplifyIntegrand[u/x,
 x], x], x] /; ((EqQ[r, 1] || EqQ[r, 2]) && IntegerQ[m] && IntegerQ[q - 1/2]) || InverseFunctionFreeQ[u, x]] /
; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x] && IntegerQ[2*q] && ((IntegerQ[m] && IntegerQ[r]) || IGtQ[q, 0])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 1265

Int[((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Wit
h[{Qx = PolynomialQuotient[(a + b*x^2 + c*x^4)^p, f*x, x], R = PolynomialRemainder[(a + b*x^2 + c*x^4)^p, f*x,
 x]}, Simp[(R*(f*x)^(m + 1)*(d + e*x^2)^(q + 1))/(d*f*(m + 1)), x] + Dist[1/(d*f^2*(m + 1)), Int[(f*x)^(m + 2)
*(d + e*x^2)^q*ExpandToSum[(d*f*(m + 1)*Qx)/x - e*R*(m + 2*q + 3), x], x], x]] /; FreeQ[{a, b, c, d, e, f, q},
 x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[p, 0] && LtQ[m, -1]

Rule 451

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(c*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(a*e*(m + 1)), x] + Dist[d/e^n, Int[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a,
 b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n*(p + 1) + 1, 0] && (IntegerQ[n] || GtQ[e, 0]) && (
(GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1]))

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{a+b \log \left (c x^n\right )}{x^4 \left (d+e x^2\right )^{3/2}} \, dx &=-\frac{a+b \log \left (c x^n\right )}{3 d x^3 \sqrt{d+e x^2}}+\frac{4 e \left (a+b \log \left (c x^n\right )\right )}{3 d^2 x \sqrt{d+e x^2}}+\frac{8 e^2 x \left (a+b \log \left (c x^n\right )\right )}{3 d^3 \sqrt{d+e x^2}}-(b n) \int \frac{-d^2+4 d e x^2+8 e^2 x^4}{3 d^3 x^4 \sqrt{d+e x^2}} \, dx\\ &=-\frac{a+b \log \left (c x^n\right )}{3 d x^3 \sqrt{d+e x^2}}+\frac{4 e \left (a+b \log \left (c x^n\right )\right )}{3 d^2 x \sqrt{d+e x^2}}+\frac{8 e^2 x \left (a+b \log \left (c x^n\right )\right )}{3 d^3 \sqrt{d+e x^2}}-\frac{(b n) \int \frac{-d^2+4 d e x^2+8 e^2 x^4}{x^4 \sqrt{d+e x^2}} \, dx}{3 d^3}\\ &=-\frac{b n \sqrt{d+e x^2}}{9 d^2 x^3}-\frac{a+b \log \left (c x^n\right )}{3 d x^3 \sqrt{d+e x^2}}+\frac{4 e \left (a+b \log \left (c x^n\right )\right )}{3 d^2 x \sqrt{d+e x^2}}+\frac{8 e^2 x \left (a+b \log \left (c x^n\right )\right )}{3 d^3 \sqrt{d+e x^2}}+\frac{(b n) \int \frac{-14 d^2 e-24 d e^2 x^2}{x^2 \sqrt{d+e x^2}} \, dx}{9 d^4}\\ &=-\frac{b n \sqrt{d+e x^2}}{9 d^2 x^3}+\frac{14 b e n \sqrt{d+e x^2}}{9 d^3 x}-\frac{a+b \log \left (c x^n\right )}{3 d x^3 \sqrt{d+e x^2}}+\frac{4 e \left (a+b \log \left (c x^n\right )\right )}{3 d^2 x \sqrt{d+e x^2}}+\frac{8 e^2 x \left (a+b \log \left (c x^n\right )\right )}{3 d^3 \sqrt{d+e x^2}}-\frac{\left (8 b e^2 n\right ) \int \frac{1}{\sqrt{d+e x^2}} \, dx}{3 d^3}\\ &=-\frac{b n \sqrt{d+e x^2}}{9 d^2 x^3}+\frac{14 b e n \sqrt{d+e x^2}}{9 d^3 x}-\frac{a+b \log \left (c x^n\right )}{3 d x^3 \sqrt{d+e x^2}}+\frac{4 e \left (a+b \log \left (c x^n\right )\right )}{3 d^2 x \sqrt{d+e x^2}}+\frac{8 e^2 x \left (a+b \log \left (c x^n\right )\right )}{3 d^3 \sqrt{d+e x^2}}-\frac{\left (8 b e^2 n\right ) \operatorname{Subst}\left (\int \frac{1}{1-e x^2} \, dx,x,\frac{x}{\sqrt{d+e x^2}}\right )}{3 d^3}\\ &=-\frac{b n \sqrt{d+e x^2}}{9 d^2 x^3}+\frac{14 b e n \sqrt{d+e x^2}}{9 d^3 x}-\frac{8 b e^{3/2} n \tanh ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d+e x^2}}\right )}{3 d^3}-\frac{a+b \log \left (c x^n\right )}{3 d x^3 \sqrt{d+e x^2}}+\frac{4 e \left (a+b \log \left (c x^n\right )\right )}{3 d^2 x \sqrt{d+e x^2}}+\frac{8 e^2 x \left (a+b \log \left (c x^n\right )\right )}{3 d^3 \sqrt{d+e x^2}}\\ \end{align*}

Mathematica [A]  time = 0.158234, size = 144, normalized size = 0.82 \[ \frac{-3 a d^2+12 a d e x^2+24 a e^2 x^4-3 b \left (d^2-4 d e x^2-8 e^2 x^4\right ) \log \left (c x^n\right )-b d^2 n-24 b e^{3/2} n x^3 \sqrt{d+e x^2} \log \left (\sqrt{e} \sqrt{d+e x^2}+e x\right )+13 b d e n x^2+14 b e^2 n x^4}{9 d^3 x^3 \sqrt{d+e x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Log[c*x^n])/(x^4*(d + e*x^2)^(3/2)),x]

[Out]

(-3*a*d^2 - b*d^2*n + 12*a*d*e*x^2 + 13*b*d*e*n*x^2 + 24*a*e^2*x^4 + 14*b*e^2*n*x^4 - 3*b*(d^2 - 4*d*e*x^2 - 8
*e^2*x^4)*Log[c*x^n] - 24*b*e^(3/2)*n*x^3*Sqrt[d + e*x^2]*Log[e*x + Sqrt[e]*Sqrt[d + e*x^2]])/(9*d^3*x^3*Sqrt[
d + e*x^2])

________________________________________________________________________________________

Maple [F]  time = 0.418, size = 0, normalized size = 0. \begin{align*} \int{\frac{a+b\ln \left ( c{x}^{n} \right ) }{{x}^{4}} \left ( e{x}^{2}+d \right ) ^{-{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*ln(c*x^n))/x^4/(e*x^2+d)^(3/2),x)

[Out]

int((a+b*ln(c*x^n))/x^4/(e*x^2+d)^(3/2),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*log(c*x^n))/x^4/(e*x^2+d)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.65842, size = 840, normalized size = 4.77 \begin{align*} \left [\frac{12 \,{\left (b e^{2} n x^{5} + b d e n x^{3}\right )} \sqrt{e} \log \left (-2 \, e x^{2} + 2 \, \sqrt{e x^{2} + d} \sqrt{e} x - d\right ) +{\left (2 \,{\left (7 \, b e^{2} n + 12 \, a e^{2}\right )} x^{4} - b d^{2} n - 3 \, a d^{2} +{\left (13 \, b d e n + 12 \, a d e\right )} x^{2} + 3 \,{\left (8 \, b e^{2} x^{4} + 4 \, b d e x^{2} - b d^{2}\right )} \log \left (c\right ) + 3 \,{\left (8 \, b e^{2} n x^{4} + 4 \, b d e n x^{2} - b d^{2} n\right )} \log \left (x\right )\right )} \sqrt{e x^{2} + d}}{9 \,{\left (d^{3} e x^{5} + d^{4} x^{3}\right )}}, \frac{24 \,{\left (b e^{2} n x^{5} + b d e n x^{3}\right )} \sqrt{-e} \arctan \left (\frac{\sqrt{-e} x}{\sqrt{e x^{2} + d}}\right ) +{\left (2 \,{\left (7 \, b e^{2} n + 12 \, a e^{2}\right )} x^{4} - b d^{2} n - 3 \, a d^{2} +{\left (13 \, b d e n + 12 \, a d e\right )} x^{2} + 3 \,{\left (8 \, b e^{2} x^{4} + 4 \, b d e x^{2} - b d^{2}\right )} \log \left (c\right ) + 3 \,{\left (8 \, b e^{2} n x^{4} + 4 \, b d e n x^{2} - b d^{2} n\right )} \log \left (x\right )\right )} \sqrt{e x^{2} + d}}{9 \,{\left (d^{3} e x^{5} + d^{4} x^{3}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*log(c*x^n))/x^4/(e*x^2+d)^(3/2),x, algorithm="fricas")

[Out]

[1/9*(12*(b*e^2*n*x^5 + b*d*e*n*x^3)*sqrt(e)*log(-2*e*x^2 + 2*sqrt(e*x^2 + d)*sqrt(e)*x - d) + (2*(7*b*e^2*n +
 12*a*e^2)*x^4 - b*d^2*n - 3*a*d^2 + (13*b*d*e*n + 12*a*d*e)*x^2 + 3*(8*b*e^2*x^4 + 4*b*d*e*x^2 - b*d^2)*log(c
) + 3*(8*b*e^2*n*x^4 + 4*b*d*e*n*x^2 - b*d^2*n)*log(x))*sqrt(e*x^2 + d))/(d^3*e*x^5 + d^4*x^3), 1/9*(24*(b*e^2
*n*x^5 + b*d*e*n*x^3)*sqrt(-e)*arctan(sqrt(-e)*x/sqrt(e*x^2 + d)) + (2*(7*b*e^2*n + 12*a*e^2)*x^4 - b*d^2*n -
3*a*d^2 + (13*b*d*e*n + 12*a*d*e)*x^2 + 3*(8*b*e^2*x^4 + 4*b*d*e*x^2 - b*d^2)*log(c) + 3*(8*b*e^2*n*x^4 + 4*b*
d*e*n*x^2 - b*d^2*n)*log(x))*sqrt(e*x^2 + d))/(d^3*e*x^5 + d^4*x^3)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*ln(c*x**n))/x**4/(e*x**2+d)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{b \log \left (c x^{n}\right ) + a}{{\left (e x^{2} + d\right )}^{\frac{3}{2}} x^{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*log(c*x^n))/x^4/(e*x^2+d)^(3/2),x, algorithm="giac")

[Out]

integrate((b*log(c*x^n) + a)/((e*x^2 + d)^(3/2)*x^4), x)